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Abstract We consider a Gaussian diffusion Xt (Ornstein-Uhlenbeck process) with drift
coefficient γ and diffusion coefficient σ 2, and an approximating process Y ε

t converging to
Xt in L2 as ε → 0. We study estimators γ̂ε, σ̂ 2

ε which are asymptotically equivalent to the
Maximum likelihood estimators of γ and σ 2, respectively. We assume that the estimators
are based on the available N = N(ε) observations extracted by sub-sampling only from the
approximating process Y ε

t with time step � = �(ε). We characterize all such adaptive sub-
sampling schemes for which γ̂ε, σ̂ 2

ε are consistent and asymptotically efficient estimators
of γ and σ 2 as ε → 0. The favorable adaptive sub-sampling schemes are identified by the
conditions ε → 0, � → 0, (�/ε) → ∞, and N� → ∞, which implies that we sample
from the process Y ε

t with a vanishing but coarse time step �(ε) � ε. This study highlights
the necessity to sub-sample at adequate rates when the observations are not generated by
the underlying stochastic model whose parameters are being estimated. The adequate sub-
sampling rates we identify seem to retain their validity in much wider contexts such as the
additive triad application we briefly outline.

Keywords Sub-sampling · Parametric estimation · Stochastic differential equations

1 Introduction

Long-term evolution of high-dimensional deterministic systems governed by complex
PDEs, have often been approximated by low-dimensional reduced stochastic models fo-
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cused on larger time scales and with a good statistical fit to the observed dynamic data.
For instance, stochastic mode-reduction technique [12–14] has successfully modeled the
dynamics of large-scale structures in systems with time-scale separation, an optimal pre-
diction setup has enabled coarse grain dynamic modeling of statistical descriptors [3–5],
spin-flip processes have provided coarse-grained models of traffic flow [1, 9–11], reduced
Markov chain models have been applied to prototype atmosphere-ocean interactions [6],
and a generic framework has been developed for dimension reduction in metastable systems
[8, 17]. In most practical contexts of this type, one seeks to approximate the dynamics of
key statistical descriptors of a chaotic high-dimensional deterministic dynamical system by
a closed form low-dimensional stochastic process, such as a (vector) stochastic differential
equations (SDE). Then the available data Un = Yn�, n = 1,2, . . . ,N are not generated by
the underlying SDE, but sampled from observations Yt generated by some complex, not
completely identifiable, deterministic dynamics.

On short time scales, the trajectories Yt of the observable physical process are quite dif-
ferent from sample paths Xt of a vector SDE (see [7]), but on longer time-scales the behavior
of Yt is well emulated by Xt . This situation is typical for data generated by a numerical dy-
namic model, such as fluid dynamics PDEs. The Yt trajectories then decorrelate slower than
those of Xt , and good estimators f (Xt1 . . .XtN ) of the underlying SDE parameters can lose
their consistency if one simply substitutes Xt for Yt in the function f and uses observations
(Yt1 . . . YtN ) which are too dense in time.

Sub-sampling strategies are then essential when the parameters of an SDE driven Xt

must be estimated using discrete data extracted from a process Y ε
t quite close to Xt for

small ε, but having higher trajectory smoothness than Xt . Sub-sampling approaches have,
for instance, been studied for the homogenization problem [15, 16].

In this paper, for a class of Gaussian processes, we characterize efficient sub-sampling
strategies with a complete determination of the optimal sub-sampling rates. For brevity, we
focus on a prototypical case where Xt is driven by a one-dimensional Gaussian SDE and
Y ε

t is a Gaussian process with differentiable trajectories. Extension to higher-dimensional
Gaussian diffusions looks quite feasible by similar techniques, and we expect to fully gen-
eralize to these cases our present characterization of good sub-sampling strategies enforcing
consistent estimation of the underlying process parameters.

Our main results are presented via a prototype example in which Xt is a stationary
Ornstein-Uhlenbeck (OU) process with unknown drift and diffusion coefficients γ and σ 2.
We assume that the only available observations are generated by another stationary Gaussian
process Y ε

t , indexed by a small parameter ε > 0. We assume that as ε → 0, the correlation
function of Y ε

t converges to the correlation function of Xt . We analyze explicitly the case
where Y ε

t is generated by averaging Xt on a sliding time window [t − ε, t]. The Y ε
t tra-

jectories are then a.s. differentiable. The process Xt is not directly observable here, and the
only available information is N observations extracted from Y ε

t by sub-sampling with a time
step �.

We consider estimators γ̂ and σ̂ 2 of γ and σ 2 based on the second-order sample moments
of the underlying process. We show that these estimators are asymptotically equivalent to
the maximum likelihood estimators (MLEs) ĝ, ŝ of γ and σ 2. In these approximate MLEs
γ̂ and σ̂ 2, based on N unavailable observations of Xt , we replace the Xt by the available
observables Y ε

t , extracted by sub-sampling with a time step � > 0. We study estimators
γ̂ε and σ̂ 2

ε for all adaptive sub-sampling schemes where ε determines the time step � =
�(ε) and the number of observations N = N(ε). We show that if the adaptive sub-sampling
scheme verifies,

ε → 0, � → 0, (�/ε) → ∞, N� → ∞,
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then, the estimators γ̂ε and σ̂ 2
ε converge in L2 to the underlying parameters γ , σ 2. Moreover,

under the stronger conditions,

ε → 0, � → 0, N� → ∞, (Nε2/�) < cte,

where cte is an arbitrary positive constant, the estimators γ̂ε and σ̂ 2
ε converge with L2-speed

of convergence proportional to 1/
√

N�.
The above conditions, as ε → 0, provide an explicit recipe for the optimal choice of the

time step � = �(ε) and the number of observations N = N(ε), given by,

� → 0, (�/ε) → ∞, (1/�) � N < cte(�/ε2).

In the particular case where the number of observations N and the time step � are of the
form N = ε−η, � = εα , then, for α, η such that α ∈ (0,1), and α < η ≤ (2 − α), the esti-
mators γ̂ε , σ̂ 2

ε are asymptotically consistent estimators of γ , σ 2 with an L2-speed of con-
vergence proportional to 1/

√
N�. The best L2-speeds of convergence are proportional to

ε1−α , with α close to 0, and are reached for � = εα , N = ε−2+α .
Our key result is presented in Theorem 1. We have validated this result by numerical

simulations presented in Sect. 9. A simple triad example is presented in Sect. 10 to illustrate
the sub-sampling problem for a class of systems with the limiting behavior (as ε → 0) given
by the Ornstein-Uhlenbeck model. Our formalism is applicable in this case and can be used
to analyze the consistency of the estimators. A simple intuitive explanation for the correct
sub-sampling strategy is also provided. The triad example provided the initial motivation
for investigating the sub-sampling problem and will be discussed in detail in a subsequent
paper.

The outline of the paper is as follows. In Sects. 2 and 4, we present asymptotically effi-
cient estimators, γ̂ and σ̂ 2, for the OU parameters of the stationary OU process and prove
their asymptotic equivalence to the MLEs. We apply known asymptotic results to fixed rate
sub-sampling where observations are extracted from the OU trajectories themselves. We
extend the consistency results to adaptive sub-sampling schemes in Sect. 5.

In Sect. 6 we present the Smoothed OU process Y ε
t and indirect estimators of OU pa-

rameters based on observations extracted from Y ε
t . In Sects. 7 and 8, we characterize the

optimal adaptive sub-sampling for such indirect estimators and discuss the properties of the
estimators. In Sect. 9 we illustrate numerically various sub-sampling strategies on simulated
diffusions. In Sect. 10 we briefly outline the additive triad application and discuss numerical
results obtained by using various adaptive sub-sampling strategies for observations from the
triad model.

2 Ornstein-Uhlenbeck Process

Consider a filtered probability space (�,F,P ;F) on which we define the stochastic
processes of interest. In dimension 1, we consider a basic example of Gaussian diffusion,
namely the Ornstein-Uhlenbeck process (denoted here as OU-process), defined as the solu-
tion for t ≥ 0 of the linear SDE

dXt = −γXtdt + σdWt, (1)

where Wt is the standard Brownian motion and the unknown parameters γ ;σ are strictly
positive. The solution Xt of SDE (1) is an asymptotically stationary Gaussian process given
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by

Xt = X0e
−γ t + σe−γ t

∫ t

0
eγ sdWs. (2)

When X0 = x0 ∈ R, the distribution of Xt is given by

Xt ∼ N
(

X0e
−γ t ,

σ 2

2γ
(1 − e−2γ t )

)
, (3)

where N(a, b) is the Gaussian distribution with mean a and variance b. The covariance
function of (Xt )t≥0 is given by

E[XtXs] = σ 2

2γ
e−γ |t−s|(1 − e−2γ (s∧t)

) + X2
0e

−γ (t+s),

where (s ∧ t) = min{s, t}. Since γ > 0, the process (Xt)t≥0 is asymptotically stationary
as t → ∞, and converges in distribution to the Gaussian N(0, (σ 2/2γ )). The asymptotic
stationary covariance is given by

lim
t→∞E[XtXt+h] = σ 2

2γ
e−γ |h|. (4)

When X0 ∼ N(0, σ 2/2γ ), then Xt is a stationary process. In this case, the asymptotic results
for parametric estimation of stationary Gaussian processes from [2] are directly applicable
to the discretely sub-sampled OU process. These results, which we recall below, are easily
extended to the situation where the OU process is only asymptotically stationary because
convergence to its stationary distribution is exponentially fast. Hence, the OU process ob-
served for t ≥ t0 such that t0 � (γ −1), may essentially be considered as stationary.

We now analyze the asymptotic properties of maximum likelihood estimators (denoted
here MLEs) of the unknown parameters γ and σ based on large sets of sub-sampled but
direct observations of the process Xt . These MLEs are differentiable functions of the co-
variance estimators of the OU process, a representation which is crucial here.

3 Fixed Rate Sub-sampling and Adaptive Sub-sampling

Assume N → ∞, and that we have (N + 1) direct observations Un = Xn� with n =
0, . . . ,N , extracted from the OU-trajectory Xt by sub-sampling at discrete time steps
t = n�.

Definition 1 We say that we have a Fixed rate Sub-sampling scheme when the time-step
� > 0 between observations remains fixed as N → ∞.

Definition 2 We say that we have an Adaptive Sub-sampling scheme when the time-step
between observations depends on N , i.e. � = �(N) → 0 as N → ∞, and we then always
impose the condition N� → ∞.

As shown below, when the global time interval N� spanned by the N available ob-
servations remains bounded, the maximum likelihood estimators of γ,σ based on these N

observations are not be asymptotically consistent. This is due to the O(1/
√

N�)m, m ≥ 1,
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bias terms in the asymptotic expansions of the estimators about the true values. From (2)
and (3), we infer that the Un satisfy the difference equation,

Un+1 = Une
−γ� +

√
σ 2(1 − e−2γ�)

2γ
Zn, (5)

where the Zn are i.i.d. standard Gaussian variables, and are independent of U0, . . . ,Un,
for each n = 0, . . . ,N − 1. When U0 = X0 ∼ N(0, σ 2

2γ
), then (Un) is a Gaussian stationary

Markov process.

Proposition 1 Let (Un)n∈Z be a centered stationary Gaussian process. Define the covari-
ances rk for each k ∈ Z by

rk = E[UnUn+k].
Define the empirical covariance estimators r̂k(N) by

r̂k(N) = (1/N)

N−1∑
n=0

UnUn+k.

Then for each pair of non-negative integers k, q , the covariance of the estimators Ckq =
Cov(r̂k(N), r̂q(N)) is given by

Ckq = (1/N)

N−1∑
j=−(N−1)

f (j) − (1/N2)

N−1∑
j=1

j (f (j) + f (−j)), (6)

where f (j) = rj rj+k−q + rj+krj−q .

Proof The covariance Cov(r̂k(N), r̂q(N)) = E[r̂k(N)r̂q(N)] − rkrq , where E[r̂k(N)r̂q(N)]
can be explicitly computed from the 4th order moments of a Gaussian random vector, and is
given by

N2E[r̂k(N)r̂q(N)] =
N−1∑
m=0

N−1∑
n=0

E[UmUm+kUnUn+q ]. (7)

A well known result for the Gaussian random variables gives us the 4th order moments in
terms of the 2nd order moments, namely

E[UmUm+kUnUn+q] = rkrq + rm−nrm−n+k−q + rm−n−qrm−n+k. (8)

Substituting (8) in (7) gives the required result. �

4 Fixed Rate Sub-sampling

Assume fixed-rate sub-sampling, so that � > 0 is fixed. The stationary covariances rk are
given by

rk = rk(�) = E[Un+kUn] = σ 2

2γ
e−γ k�, (9)



Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions 1071

which implies the relation
∑
k∈Z

|k||rk(�)| < ∞. (10)

Given the discrete observations Un, define the standard empirical covariance estimators
(r̂k)k=0,1 by

r̂0 = r̂0(N,�) = 1

N

N−1∑
n=0

U 2
n , r̂1 = r̂1(N,�) = 1

N

N−1∑
n=0

Un+1Un. (11)

Since the covariances rk verify (10), known results [2] on stationary Gaussian processes
show that for each fixed � > 0 as N → ∞, the covariance estimators r̂k are the best esti-
mators of the rk , they are consistent (i.e. converges almost surely to the true rk), and asymp-
totically efficient (i.e. the asymptotic variances of r̂k attain the Cramér-Rao bound). We also
know (see [2, Chap. X]) that as N → ∞, the random vectors

√
N[r̂0 − r0, r̂1 − r1]

are asymptotically centered and Gaussian, with limit covariance matrix 	 = (	st ), s, t ∈
{0;1} given by

	st =
∑
m∈Z

(rmrm−s+t + rm−srm+t ),

with rm given by (9), and hence, the covariance matrix 	 is given by

	00 = 2r2
0 (1 + e−2γ�)/(1 − e−2γ�),

	11 = r2
0 (1 + 4e−2γ� − e−4γ�)/(1 − e−2γ�), (12)

	01 = 	10 = 4r2
0 e−γ�/(1 − e−2γ�),

where r0 = σ 2

2γ
. The relation (9) between OU parameters γ , σ 2 and the covariances r0 and

r1 imply that

γ = g(r0, r1), σ 2 = s(r0, r1),

where the smooth functions g, s are given by

g(r0, r1) = (−1/�) log

(
r1

r0

)
, s(r0, r1) = (−2r0/�) log

(
r1

r0

)
.

We now study the estimators γ̂ and σ̂ 2 for γ and σ 2 given by

γ̂ = g(r̂0, r̂1), σ̂ 2 = s(r̂0, r̂1),

which have the explicit expressions

γ̂ = − 1

�
log

(
r̂1

r̂0

)
, σ̂ 2 = 2γ̂ r̂0. (13)
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Proposition 2 (Asymptotics for γ̂ and σ̂ 2) Consider an OU-process Xt directly observed
at times t = n�, n = 0, . . . ,N , sub-sampling at fixed rate � > 0. Then as N → ∞, the
estimators γ̂ and σ̂ 2 of γ and σ 2 are consistent (almost surely). Moreover

√
N(γ̂ − γ ) and√

N(σ̂ 2 − σ 2) are asymptotically Gaussian with limit variances vγ and vσ 2 given by

vγ =
(

e−2γ� + e2γ� − 2

�2(1 − e−2γ�)

)
,

vσ 2 = 4r2
0

(
2(1 + γ�)2(1 + e−2γ�) − 8γ� + e2γ� − e−2γ� − 4

�2(1 − e−2γ�)

)
.

Proof Define the function F : R
2 → R

2 by

F(r0, r1) = [g(r0, r1), s(r0, r1)].

Since F is twice continuously differentiable in the neighborhood of (r0, r1) for each � > 0,
it follows from [2, Chap. X] that the estimator ν̂ = F(r̂0, r̂1) is a consistent estimator of
ν = F(r0, r1). Also, the distribution of

√
N(ν̂ − ν) converges, as N → ∞, toward the 2-

dimensional centered Gaussian distribution with covariance matrix

�F = A	AT

where, for each fixed � > 0, the (2 × 2) matrix A = ∇F(r0, r1) is the differential of F

at true covariances (r0, r1), AT denotes the transpose of A, and the covariance matrix 	 is
given by (12). This says exactly that γ̂ and σ̂ 2 are consistent and asymptotically Gaussian
estimators of γ and σ 2, and that �F is the limit covariance matrix of the random vector

√
N [(γ̂ − γ ), (σ̂ 2 − σ 2)]. �

Recall that 2 asymptotically Gaussian estimators τ1,N and τ2,N of a parameter τ are said
to be asymptotically equivalent if

√
N(τ1,N − τ) and

√
N(τ2,N − τ) have the same limit

variance as N → ∞.

Proposition 3 (MLEs) The log likelihood LN,� of U = {Un} is given by

LN,�(U ;γ,σ 2) = −1

2
log

(
πσ 2

γ

)
− γU 2

0

σ 2
− N

2
log

(
πσ 2

γ
(1 − e−2γ�)

)

− γ (σ 2(1 − e−2γ�))−1
N−1∑
n=0

(Un+1 − e−γ�Un)
2.

Call ĝ = ĝ(N,�) and ŝ = ŝ(N,�) the maximum likelihood estimators of γ and σ 2, ob-
tained by maximizing LN,� in γ,σ 2. Then, the MLE estimators ĝ and ŝ are resp. asymptot-
ically equivalent to the estimators γ̂ and σ̂ 2 defined above by (13).

Proof From (5), for a fixed � > 0, we derive the Gaussian conditional density of Un+1 given
Un, and then the likelihood exp(−LN,�) of {U0, . . . ,UN } using the Markov property of the
Un. This yields the explicit expression of LN,� stated above.
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The values (γ, σ 2) maximizing LN,� must verify the necessary conditions ∇LN,�(γ,σ 2)

= 0, namely the two equations

σ 2 =
(

2γ

N + 1

)(
Nr̂0 + 2γ (U 2

N − U 2
0 e−2γ�)

(1 − e−2γ�)

)
,

γ = −1

�
log

(
r̂1

r̂0 + N−1((σ 2/2γ ) − U 2
0 )

)
.

(14)

The Hessian of LN,� is negative definite for large N , hence for large N, LN,� has a unique
supremum reached at the point (ĝ, ŝ), which solves (14). Note that these equations do
not lead to an explicit expression for (ĝ, ŝ). Using large deviation bounds for Gaussian
processes, one proves that with very large probability, γ̂ and σ̂ 2 is a good approximation to
the solution of (14), with an accuracy of the order of 1√

N
as N → ∞. �

We have seen that under fixed-rate sub-sampling scheme the covariance estimators r̂k and
the OU estimators γ̂ , σ̂ 2 are consistent (in L2) and asymptotically Gaussian. The L2-speed
of convergence for the OU estimators γ̂ , σ̂ 2 are proportional to 1/

√
N , for each fixed value

of � > 0.

5 Adaptive Sub-sampling

We now study the consistency of the estimators γ̂ = γ̂ (N,�) and σ̂ 2 = σ̂ 2(N,�) under
adaptive sub-sampling scheme (see Definition 2).

Proposition 4 (Asymptotics of the Covariances) Consider an adaptive sub-sampling
scheme where we have N observations Un = Xn� of the stationary OU process Xt at time
intervals of length � = �(N) depending on N . We assume (see Definition 2)

� → 0, N� → ∞. (15)

The true covariances rk = rk(�) of the process Un are now functions of N still given by (9).
Hence as N → ∞, and for each k ≥ 0, rk(�(N)) → (σ 2/2γ ).

Then, under condition (15), and for each k ≥ 0, the empirical covariances r̂k converge
in L2 to (σ 2/2γ ). Moreover, for each k ≥ 0 the L2−norms of the variables

√
N�(r̂k − rk)

converge to (σ 2/γ
√

2γ ).

Proof The associated speed of convergence to zero in L2 for the difference (r̂k − rk) can be
computed directly, as outlined here for k = 0 and k = 1. Let Jk = E[(r̂k − rk)

2], then, using
the expression (6) in Proposition 1, such that Jk = Ckk , we obtain for k = 0,1,

J0 = 2r2
0 (1 + e2γ�)

N(e2γ� − 1)
+ 4r2

0 e2γ�(e−2γN� − 1)

N2(e2γ� − 1)2
,

J1 = r2
0 (e4γ� + 4e2γ� − 1)

Ne2γ�(e2γ� − 1)
+ 4r2

0 e2γ�(e−2γN� − 1)

N2(e2γ� − 1)2
.

(16)

Under the conditions (15), and as � → 0,N� → ∞ using the convergence of (�/(e2γ� −
1)) → (2γ )−1, and N(e2γ� − 1) → ∞ (for γ > 0), we have,

(N�)J0 → σ 4

2γ 3
, (N�)J1 → σ 4

2γ 3
.
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This concludes the proof. �

Proposition 5 For each N,�, the random variables Z0 = Z0(N,�) and Z1 = Z1(N,�)

defined by,

Z0 = (r̂0 − r0)√
J0

, Z1 = (r̂1 − r1)√
J1

, (17)

have mean 0, variance 1, and covariance E[Z0Z1] = J01/(
√

J0J1), where J0, J1, J01 are
given by (16), (19). Then, under conditions (15) we have the following first-order L2 ap-
proximations for the empirical covariances r̂k ,

r̂0 = r0 + r0√
N�

√
2

γ
Z0 + Z0√

N�
× O

(
�2 + 1

N�

)
,

r̂1 = r1 + r0√
N�

√
2

γ
Z1 + Z1√

N�
× O

(
�2 + 1

N�

)
,

(18)

where the notation O(h) represents deterministic functions of h bounded by a constant
multiple of h.

Proof The exact expression for J01 derived using Proposition 1 is given by,

J01 = 4r2
0 eγ�

N(e2γ� − 1)
− 2r2

0 eγ�(e2γ� + 1)(1 − e−2γN�))

N2(e2γ� − 1)2
. (19)

Applying Taylor’s expansions to Jk as given by (16) and J01 given by (19), we obtain

J0 = 2r2
0

γN�

(
1 + γ 2�2

3
− 1 + O(�2)

2γN�
+ O(�4)

)
,

J1 = 2r2
0

γN�

(
1 − 2γ 2�2

3
+ γ 3�3 − 1 + O(�2)

2γN�
+ O(�4)

)
, (20)

J01 = 2r2
0

γN�

(
1 − γ 2�2

6
− 1 + O(�2)

2γN�
+ O(�4)

)
.

Substituting in (17) the above expressions for J0, J1 gives the required L2-approximations
as expressed in (18). �

Define the random variable Zk , for any integer k ≥ 0, as Zk = (r̂k − rk)/
√

Jk , where
Jk = Ckk is given by (6), in particular for the OU process. The next lemma will be needed
to prove the consistency of γ̂ and σ̂ 2.

Lemma 1 For each integer k ≥ 0, consider a random variable Vk = Vk(θ) given by,

Vk =
(

akZk

1 + akθZk

)2

, (21)

where Zk = (r̂k − rk)/
√

Jk , θ ∈ (0,1) and ak = eγ k�
√

Jk/r0, such that Jk ∼ O(1/N�).
Then, under the condition (15), ‖Vk‖L2 → 0, at a speed proportional to 1/N�.
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Proof The L2-norm is given by ‖Vk‖2
L2

= E[(akZk/(1 + akθZk))
4]. Since, the tails of the

density for Zk decay exponentially fast, we have for any M � 1, P {(1 + akθZk)
−1 > M} <

e−(C1
√

N�/θ), where C1 is a positive constant. Also,

P {(1 + akθZk)
−1 < 0} = P

{
Zk < −(C2

√
N�/θ)

}
< e−(C2/θ)

√
N�,

where C2 is a positive constant. Therefore, using Cauchy-Schwarz inequality we obtain,

‖Vk‖2
L2 ≤ a4

k‖Z4
k‖L2‖(1 + akθZk)

−4‖L2 ≤ C3

N2�2
,

where ‖Z4
k‖L2 is uniformly bounded in N,� for each k and C3 is some positive constant.

This proves the required result. �

Proposition 6 (Consistency of γ̂ and σ̂ 2) Consider the adaptive sub-sampling scheme pro-
viding N observations Un = Xn� of the stationary OU process Xt at time intervals of length
� = �(N). Define the estimators γ̂ and σ̂ 2 by formula (13).

Then, under the conditions

� → 0, N� → ∞, (22)

the estimators γ̂ , σ̂ 2 are asymptotically consistent estimators of γ , σ 2, i.e., γ̂ → γ , and
σ̂ 2 → σ 2 in L2.

Moreover, given (22), the L2 norms of the variables
√

N�(γ̂ − γ ), and
√

N�(σ̂ 2 − σ 2)

converge, respectively, to
√

2γ and 0. Therefore, the estimators converge to the true values
with an L2-speed of convergence proportional to 1/

√
N�. In particular, under stronger

conditions,

� → 0, N�2 → ∞, (23)

the L2-speed of convergence of the estimator σ̂ 2 to σ 2 is proportional to 1/
√

N , such that
‖√N(σ̂ 2 − σ 2)‖L2 → σ 2

√
2.

Proof From (17) we obtain, r̂0 = r0 +√
J0Z0, and r̂1 = r1(�)+√

J1Z1, which we substitute
in

γ̂ = − 1

�
log

(
r̂1

r̂0

)
.

First, we rewrite the ratio R̂ = (r̂1/r̂0) as follows,

R̂ = e−γ�

(
1 + eγ�

√
J1

r0
Z1

)(
1 +

√
J0

r0
Z0

)−1

.

Then taking logarithms of the ratio R̂, we obtain,

γ̂ = γ − 1

�
log

(
1 + eγ�

√
J1

r0
Z1

)
+ 1

�
log

(
1 +

√
J0

r0
Z0

)
.

Using Lemma 1, under the conditions (22), and using Taylor’s expansion we obtain that the
following holds in L2,

log

(
1 +

√
J0

r0
Z0

)
=

√
J0

r0
Z0 − (V0/2),
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log

(
1 + eγ�

√
J1

r0
Z1

)
= eγ�

√
J1

r0
Z1 − (V1/2),

where the random remainder terms V0,V1 are given by (21) such that the L2 norms
‖V1 − V0‖L2 ∼ O(1/N), ‖V0‖L2 ∼ O(1/N�), and ‖V1‖L2 ∼ O(1/N�).

Let the random variable Zγ = (eγ�
√

J1Z1 −√
J0Z0)/(�r0). The L2 norm of Zγ is given

by,

‖Zγ ‖2
L2 = (e2γ�J1 + J0 − 2eγ�J01)

(�r0)2
= 2γ

N�
(1 + O(�)).

Then, the first-order L2 approximation for γ̂ is given by,

γ̂ = γ − Zγ + Rγ × O

(
1

N�

)
, (24)

where the random remainder term Rγ = Rγ (N,�) is uniformly bounded in L2 norm. There-
fore, under the conditions (22), the estimator γ̂ → γ in L2 with an L2-speed of convergence
proportional to 1/

√
N� such that,

‖√N�(γ̂ − γ )‖L2 → √
2γ .

The diffusion estimator σ̂ 2 = 2γ̂ r̂0 by (13). Let the random variable Zσ 2 = (2/�)(eγ�√
J1Z1 − (1 + γ�)

√
J0Z0), then its L2 norm is given by,

‖Zσ 2‖2
L2

= 2σ 4

N
(1 + O(�)).

Hence, using (17) and (24) we obtain,

σ̂ 2 = σ 2 − Zσ 2 + Rσ 2 × O

(
1

N�

)
, (25)

where the random remainder term Rσ 2 = Rσ 2(N,�) is uniformly bounded in L2 norm.
Therefore, under the conditions (22), σ̂ 2 → σ 2 in L2. Moreover, under the conditions (23),
the following convergence holds,

‖√N(σ̂ 2 − σ 2)‖L2 → σ 2
√

2. �

To summarize, when the observations are directly extracted from a stationary OU process
then, under the fixed rate sub-sampling scheme the MLEs for the parameters of the OU-
process are consistent and asymptotically Gaussian. The L2-speed of convergence for the
estimators γ̂ and σ̂ 2 as N → ∞ is proportional to 1/

√
N for each fixed � > 0.

Under the adaptive sub-sampling scheme (22), the estimators γ̂ and σ̂ 2 are asymptoti-
cally consistent estimators of γ , σ 2. The usual L2-speed of convergence to true values pro-
portional to 1/

√
N� is achievable for the estimators γ̂ , σ̂ 2. In fact for the diffusion estimator

σ̂ 2, under stronger conditions on N , �, one can achieve a faster L2-speed of convergence
proportional to 1/

√
N .

The asymptotic distribution of the empirical covariance estimators and the OU estima-
tors, under the adaptive sub-sampling scheme, will be studied elsewhere.

We now study a more common and more complex scenario in which only indirect obser-
vations of the underlying OU-process Xt are available, and are generated by another process
Yt which is not identical to Xt , but is simply close to Xt in L2. In this case sub-sampling will
become an essential tool to generate consistent estimators of the underlying parameters.
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6 Indirect Estimation of OU-Parameters

Assume now that the stationary OU process Xt is not directly observable, and that all avail-
able observations are extracted from a centered stationary process Y ε

t , which tends to the
process Xt in L2 as ε → 0. More precisely, defining the covariance functions

Kε(h) = E[Y ε
t Y ε

t+h], and rh = E[XtXt+h],

we assume that

Kε(h) → rh as ε → 0.

We focus here on one precise example of this situation, namely, the specific case where
the process Y ε

t is the Smoothed Ornstein-Uhlenbeck process, also denoted SOU-process,
obtained by averaging the OU process over a sliding window of fixed length ε > 0, so that

Y ε
t = 1

ε

∫ t

t−ε

Xsds. (26)

Note that Y ε
t is a centered stationary Gaussian process with a.s. differentiable trajectories.

The covariance function of Y ε
t at time lag h is given by,

Kε(h) = E[Y ε
t Y ε

t+h] = 1

ε

(∫ t+h

t+h−ε

E[XsY
ε
t ]ds

)
.

As is well known, we may in this Gaussian context freely commute expectation signs and in-
tegral signs, so that the computation of Kε(h) boils down to computing simple deterministic
integrals of the explicit stationary covariance function of Xt . We thus obtain the following
expressions for Kε(h), for h ≥ 0:

Kε(h) =
⎧⎨
⎩

σ 2

2γ 3ε2 e−γ h(e−γ ε + eγ ε − 2), h ≥ ε,

σ 2

2γ 3ε2 e−γ h(2γ (ε − h)eγh + e−γ ε(e2γ h + 1) − 2), h < ε.
(27)

In particular, we have

Kε(0) = σ 2

γ 3ε2
(e−γ ε − 1 + γ ε). (28)

Therefore, the correlation function of Y ε is given by

Kε(h)

Kε(0)
= 1

2
e−γ h

(
e−γ ε + eγ ε − 2

e−γ ε − 1 + γ ε

)
, h ≥ ε, (29)

Kε(h)

Kε(0)
= 1

2
e−γ h

(
2γ (ε − h)eγh + e−γ ε(e2γ h + 1) − 2

e−γ ε − 1 + γ ε

)
, 0 ≤ h < ε. (30)

Next we present the study of the asymptotic properties of the estimators, γ̂ε and σ̂ 2
ε , based

on the observations sub-sampled from the process Y ε
t .
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7 Fixed Rate Sub-sampling for Indirect Estimation of parameters

Recall that now the only available information are (N + 1) indirect observations Uε
n = Y ε

n�

extracted from the SOU-process Y ε
t by sub-sampling with a fixed time-step � > 0. The goal

is still to estimate the parameters γ and σ 2 of the underlying OU process. We will study the
estimators given by formulas (13) where we replace Un by Uε

n . These approximate MLEs of
γ and σ 2, are given by

γ̂ε = − 1

�
log

(
r̂ ε

1

r̂ ε
0

)
, σ̂ 2

ε = 2γ̂ε r̂
ε
0 , (31)

where r̂ ε
k = (1/N)

∑N−1
n=0 Uε

nUε
n+k is the standard empirical estimator of the covariance rε

k =
Kε(k�) given by (27), for k = 0,1.

Proposition 7 (Asymptotic Bias of γ̂ε and σ̂ 2
ε ) For fixed ε and � the following convergence

holds in L2 as N → ∞, namely,

γ̂ε → G = G(ε,�), σ̂ 2
ε → S = S(ε,�),

where

G = −(1/�) log(Kε(�)/Kε(0)) and S = 2GKε(0), (32)

and where the covariances Kε(0) and Kε(�) are given by (27).
Hence, as N → ∞, γ̂ε and σ̂ 2

ε have a non-zero asymptotic bias given by,

Biasγ = G − γ ; Biasσ 2 = S − σ 2. (33)

The explicit expressions of these asymptotic biases are given below in (34) and (35).

Proof Since the SOU-process Y ε is here a fixed stationary Gaussian process from which
we sub-sample the observations Uε

n with a fixed time-step �, the proof applies exactly the
same generic principles as the proof of Proposition 2 above, and we may directly apply the
results from Sect. 4 to the covariance estimators r̂ ε

k for k = 0,1 and to γ̂ε = g(r̂ε
0 , r̂ε

1 ) and
σ̂ 2

ε = s(r̂ε
0 , r̂ε

1 ), given by (31). �

As expected, indirect estimation of the OU process is less favorable than estimation based
on direct OU observations, so that the estimators γ̂ε , σ̂ 2

ε are not consistent as N → ∞, for a
fixed value of ε and �. Instead, these estimators have non zero asymptotic biases (G − γ )

and (S − σ 2) given by (32), (33), that are functions of �, ε.
The asymptotic biases do not remain bounded for all values of ε → 0, � → 0. In the

following proposition we derive the exact regime where it is possible to achieve asymptotic
consistency of the estimators γ̂ε , σ̂ 2

ε in the limit of ε → 0, � → 0.

Proposition 8 (Favorable Regime for Consistency) As seen in Proposition 7, for fixed ε

and �, the estimators γ̂ε and σ̂ 2
ε both have non-zero asymptotic biases Biasγ and Biasσ 2 as

N → ∞, which depend only on ε,�,γ,σ . Assume now that ε → 0, and for each ε select a
number N = N(ε) of indirect observations of Y ε

t and a sub-sampling rate � = �(ε) such
that � → 0 and N� → ∞.

Then, as ε → 0, Biasγ and Biasσ 2 tend to 0 if and only if (�/ε) → ∞.
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Proof From formula (28), we see that as ε → 0, we have Kε(0) → σ 2/2γ ; then the expres-
sion of S given by (32) shows that whenever G → γ as ε → 0, we must also have S → σ 2.
Hence we only need to study the asymptotic behavior of Biasγ . Note first that whenever
� = �(ε) ≥ ε and ε → 0, we have in view of (29) and (33),

Biasγ = −(1/�) log

(
e−γ ε + eγ ε − 2

2(e−γ ε − 1 + γ ε)

)
≈ − γ ε

3�
. (34)

We have several cases to consider.

• Case (a): Assume that (�/ε) → ∞ as ε → 0. Then, for ε small enough, we have � ≥ ε,
and (34) proves that Biasγ → 0, as ε → 0, and, hence, Biasσ 2 → 0.

• Case (b): Let �/ε remain bounded as ε → 0. Then, there exist a subsequence ε → 0 such
that �/ε → L for some non negative L.
– Case (ba): If L ≥ 1 then for ε small enough we have � ≥ ε and hence, in view of (34),

we have Biasγ ≈ (−γ ε/(3�)) so that Biasγ tends to the nonzero limit (−γ /(3L)).
– Case (bb): Assume that L < 1. Then for ε small enough we have � < ε and hence, in

view of (30) and (33), we have

Biasγ = −(1/�) log

(
2γ (ε − �)eγ� + e−γ ε(e2γ� + 1) − 2

2(e−γ ε − 1 + γ ε)

)
. (35)

Taylor expansions with respect to ε in (35) easily shows that Biasγ tend to (γ /L)(1/3−
L + L2 + 2L3/3), when ε → 0. But the polynomial (1/3 − L + L2 + 2L3/3) remains
strictly positive for 0 ≤ L < 1. Hence, Biasγ tends to a nonzero limit in case (bb). �

Proposition 8, clearly defines a favorable regime for adaptive sub-sampling. We have
seen that the asymptotic biases of γ̂ε and σ̂ 2

ε , namely, Biasγ and Biasσ 2 , tend to 0 as ε → 0
if and only if (�/ε) → ∞. This strongly indicates that optimal adaptive sub-sampling
schemes from indirect observations based on Y ε should provide N = N(ε) observations
Uε

n = Y ε
n� sub-sampled from Y ε

t at time interval � = �(ε), under the following set of si-
multaneous conditions,

ε → 0; � → 0; �/ε → ∞; N� → ∞. (36)

These results highlight the necessity, as ε → 0, to sub-sample the approximating process Y ε

with a vanishing but coarse time-step �(ε) � ε to hope to obtain asymptotically consistent
estimates of the underlying parameters.

Under fixed rate sub-sampling, applying the general results on the asymptotic properties
of empirical covariance estimators based on the observations from a stationary Gaussian
processes as described in [2, Chap. X], the estimators γ̂ε , σ̂ 2

ε are asymptotically Gaussian,
i.e., the random vector

√
N(γ̂ε −G, σ̂ 2

ε −S) converges to a Gaussian distribution with mean
zero, and covariance matrix dependent on the true parameters γ , σ 2, ε, and �.

Since, in particular, for each fixed ε, � > 0, as N → ∞, the empirical covariance es-
timators r̂ ε

0 , r̂ ε
1 are asymptotically Gaussian [2]. The estimators, using (31), are given by

γ̂ε = g(r̂ε
0 , r̂ε

1 ) and σ̂ 2
ε = s(r̂ε

0 , r̂ε
1 ), such that g, s have continuous second-order partial deriv-

atives in a neighborhood of the true values r0, r1. Therefore, as N → ∞, for each fixed ε,
� > 0, the estimators γ̂ε = g(r̂ε

0 , r̂ε
1 ) and σ̂ 2

ε = s(r̂ε
0 , r̂ε

1 ) are asymptotically Gaussian [2].
We now study these estimators under the conditions (36) in detail.
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8 Adaptive Sub-sampling for Indirect Estimation

Proposition 9 (Asymptotics of the Covariances) Consider an adaptive sub-sampling
scheme, based on N = N(ε) indirect observations extracted from Y ε

t by sub-sampling
with time steps � = �(ε). Then, under the conditions (36), the L2 norms of the variables
(r̂ε

0 − rε
0 ), and (r̂ε

1 − rε
1 ) converge to 0 with speeds of convergence proportional to 1/

√
N�.

Moreover, for each k = 0,1, the L2 norm of
√

N�(r̂ε
k − rε

k ) converges to (σ 2/(γ
√

2γ )),
which is identical to the asymptotic limit obtained when direct observations of the underlying
OU process are available.

Proof Define J ε
k = E[(r̂ε

k − rε
k )

2] for k = 0,1 computed explicitly for � > ε, by using
Proposition 1. Let

C0 = σ 2(e−γ ε + γ ε − 1)

γ 3ε2
, C1 = σ 2(eγ ε + e−γ ε − 2)

2γ 3ε2
, and b = e−γ�,

then we have

J ε
0 = 2C2

1

N

(
C2

0

C2
1

+ 2b2

1 − b2
− 2b2(1 − b2N)

N(1 − b2)2

)
,

J ε
1 = C2

1

N

(
C2

0

C2
1

+ 2C0b
2

C1
+ b2(3 + b2)

1 − b2
− 2b2B1

N

)
,

(37)

where B1 = [(C0/C1) + (1 + 2b2 − b4 − 2b2N)/(1 − b2)2]. From (37) we obtain bounds for
J ε

0 and J ε
1 given by

J ε
0 ≤ 2C2

0

N
+ 2C2

1

γN�
, and J ε

1 ≤ C2
0

N
+ 2C0C1e

−γ�

N
+ 2C2

1

γN�
.

These inequalities show that J ε
k → 0 under the adaptive sub-sampling scheme defined in

(36). The exact expressions in (37) gives, as ε → 0,

(N�)J ε
k → σ 4

2γ 3
.

Therefore, the L2-speeds of convergence for the empirical covariance estimators, as ε → 0,
are proportional to 1/

√
N�. �

Proposition 10 For each N,�,ε, the random variables Z0 = Z0(N,�,ε) and Z1 =
Z1(N,�,ε) defined by,

Z0 = (r̂ε
0 − rε

0 )√
J ε

0

, Z1 = (r̂ε
1 − rε

1 )√
J ε

1

, (38)

have mean 0, variance 1, and covariance E[Z0Z1] = J ε
01/

√
J ε

0 J ε
1 , where J ε

0 , J ε
1 , J ε

01 are
given by (37), (40).

Then, under the conditions,

ε → 0, � → 0, N� → ∞, � > ε,
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the following first-order L2 approximations for the empirical covariances r̂ ε
k hold, namely,

r̂ ε
0 = rε

0 +
√

2r0√
γN�

Z0 + Z0√
N�

(
O(ε2) + O(�2) + O

(
1

N�

))
,

r̂ε
1 = rε

1 (�) +
√

2r0√
γN�

Z1 + Z1√
N�

(
O(ε2) + O(�2) + O

(
1

N�

))
,

(39)

where O(h) is a deterministic function of h, bounded by a constant multiple of h.

Proof Let b = e−γ� and,

C0 = σ 2(e−γ ε + γ ε − 1)

γ 3ε2
, C1 = σ 2(eγ ε + e−γ ε − 2)

2γ 3ε2
,

then, the exact expression for the covariance J ε
01 = E[(r̂ε

0 − rε
0 )(r̂ε

1 − rε
1 )], is given by

J ε
01 = 2C2

1

N

(
2C0b

C1
+ 2b3

1 − b2
− B2

N

)
, (40)

where

B2 =
(

C0b

C1

)
+

(
3b3 − b5 − b2N+1(1 + b2)

(1 − b2)2

)
.

Using Taylor’s expansions we obtain the following approximations,

J ε
0 = 2r2

0

γN�

(
1 + γ 2�2

3
− 1

2γN�
+ O(�4) + O(�2)

N�
+ O(ε2)

)
,

J ε
1 = 2r2

0

γN�

(
1 − 2γ 2�2

3
+ γ 3�3 − 1

2γN�
+ O(�4) + O(�2)

N�
+ O(ε2)

)
,

J ε
01 = 2r2

0

γN�

(
1 − γ 2�2

6
− 1

2γN�
+ O(�4) + O(�)

N�
+ O(ε2)

)
,

from which we can deduce (39). �

The following theorem presents the key results of our study.

Theorem 1 (Consistency of γ̂ε and σ̂ 2
ε ) Consider an adaptive sub-sampling scheme, based

on N = N(ε) indirect observations extracted from Y ε
t by sub-sampling with time steps � =

�(ε). Let the estimators γ̂ε and σ̂ 2
ε of γ , σ 2, be given by (31). Then, under the following

conditions,

ε → 0, � → 0, N� → ∞, �/ε → ∞, (41)

the estimators γ̂ε and σ̂ 2
ε are asymptotically consistent, i.e., γ̂ε → γ , σ̂ 2

ε → σ 2 in L2.
Moreover, the expected L2-speed of convergence, proportional to 1/

√
N�, is achievable

under the following conditions which are stronger than (41),

ε → 0, � → 0, N� → ∞, Nε2/� < cte. (42)
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In particular, under stronger conditions than (42), (41), namely,

ε → 0, � → 0, N�2 → ∞, Nε2/�2 → 0, (43)

the estimators are asymptotically efficient, and the asymptotic limit of the L2-norms of the
random variables

√
N�(γ̂ε − γ ),

√
N(σ̂ 2

ε − σ 2) converge, respectively, to
√

2γ , σ 2
√

2,
exactly as in the case of direct observations.

Proof Substitute the expressions for empirical covariance estimators r̂ ε
k , given by (38), in

the expressions for the estimators γ̂ε and σ̂ 2
ε defined in (31). In particular, the drift estimator

γ̂ε is given by,

γ̂ε = −1

�
log

(
e−γ�C1 + √

J ε
1 Z1

C0 + √
J ε

0 Z0

)
.

Then, using Taylor expansions as ε → 0 and using arguments similar to those given in the
proof of Proposition 6, we obtain the following first-order L2-approximation for γ̂ε given
by,

γ̂ε = γ − γ ε

3�
− Zγ + Rγ × O

(
1

N�

)
+ ε

�
× O(ε), (44)

where the zero mean random variable Zγ is given by,

Zγ = eγ�
√

J ε
1 Z1

�C1
−

√
J ε

0 Z0

�C0
.

The L2 norm of the random variable Zγ using Taylor’s expansion for ε → 0, � → 0, N� →
∞ is approximated by,

‖Zγ ‖2
L2 = 2γ

N�

(
1 + 3γ� − 1 + O(�)

2γN�
+ O

(
ε

�

)
+ O(�2) + O(ε)

)
. (45)

The remainder term Rγ = Rγ (�,ε,N) is uniformly bounded in L2 norm. Therefore, using
(44) and (45), under the conditions (41) the estimator γ̂ε converges in L2 to γ .

To compute the L2-speed of convergence we study

√
N�(γ̂ε − γ ) = −√

N�Zγ − γ ε
√

N

3
√

�
+ Rγ × O

(
1√
N�

)
. (46)

Using (45), (46) we see that the L2-norm of
√

N�(γ̂ε − γ ) converges to a constant under
conditions (42). Under the adaptive sub-sampling scheme (42), we assume Nε2/� → 0 to
deduce that the asymptotic variance of estimation errors converge to the same constant as in
the case of direct estimation (see Proposition 6), i.e.,

‖√N�(γ̂ε − γ )‖2
L2 → 2γ.

Similarly, given the conditions (41), the diffusion estimator σ̂ 2
ε = 2γ̂ε r̂

ε
0 converges in L2 to

the true value σ 2, and, hence, is asymptotically consistent. Furthermore, under conditions
(43) we obtain,

‖√N(σ̂ 2
ε − σ 2)‖2

L2 → 2σ 4. �
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The main conclusion of Theorem 1 is that under conditions (42) the estimators γ̂ε , σ̂ 2
ε ,

based on indirect estimation, are asymptotically consistent estimators of γ , σ 2, with an L2-
speed of convergence proportional to 1/

√
N�.

A natural objective is to optimally select � = �(ε) and N = N(ε), verifying the condi-
tions (42), in order to achieve the fastest speed of convergence. A pragmatic interpretation
of the conditions (42) is that, as ε → 0, one selects � = �(ε) such that

� → 0, � � ε, and N verifies, (1/�) � N < cte(�/ε2). (47)

The L2-speed of convergence (1/
√

N�) of our estimators γ̂ε , σ̂ 2
ε then verifies,

cte

(
ε

�

)
<

1√
N�

� 1. (48)

Clearly, the lower bound (ε/�) in (48) is the best L2-speed of convergence achievable under
the conditions (42). This speed is attained when N ∼ �/ε2 → ∞, which corresponds to a
global time interval of observations T ∗ = N� = cte(�2/ε2).

Choosing a global time interval of observations T � T ∗ → ∞ will not improve the
accuracy, since, the L2 errors will then be dominated by (ε/�) � (1/

√
N�). This, indeed,

provides evidence that under indirect estimation, observing the data on an increasing time
interval N� will not improve by itself the accuracy of the estimators, and coarse graining
(i.e., � � ε) of the data is necessary to reduce the estimation errors.

In the following corollary we provide a particular example of the optimal criterion iden-
tified by the pragmatic interpretation (47).

Corollary 1 (Power Law Criterion for Optimal Sub-Sampling) As ε → 0, assume that N(ε)

and �(ε) are given by powers of ε, namely, N(ε) = ε−η, �(ε) = εα . Then,

1. As ε → 0, for any α, η such that α ∈ (0,1), η > α, the estimators γ̂ε , σ̂ 2
ε are asymptoti-

cally consistent in L2 norm.
2. Moreover, as ε → 0, under stronger conditions, namely, for any α, η such that α ∈ (0,1),

α < η ≤ 2 −α, the estimators converge with an L2-speed of convergence proportional to
1/

√
N� = ε(η−α)/2.

3. The best speed of convergence are reached when α > 0 is close to 0, and η = 2−α. Then,
we obtain � = εα , N = ε−(2−α), and the global time of observations N� = ε−2(1−α).

9 Numerical Simulations

We now study numerically a few typical examples of adaptive sub-sampling schemes ensur-
ing asymptotic consistency of estimators γ̂ε , σ̂ 2

ε . In view of the Corollary 1, we let �(ε) = εα

where α ∈ (0,1), and the number of observations N � (�/ε2). The following numeri-
cal results show that as ε → 0, Biasγ (�, ε) and Biasσ 2(�, ε) converge to 0 if and only if
(�(ε)/ε) → ∞ (See Proposition 8). As evident in the following numerical study and from
Corollary 1 for smaller values of α ∈ (0,1), the convergence of the Biasγ and Biasσ 2 to zero
is faster.

We generate numerical discrete simulations for the trajectory Xt of the OU-process with
fixed parameters γ = 3.2625 and σ = 6.7500. Each associated SOU-process trajectory Y ε

t

is computed by direct integration of the discretized trajectory Xt on a sliding time window
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Fig. 1 Relative (%) errors in MLEs for γ and σ 2 based on observations from the SOU process and
sub-sampled with three different strategies. Left part—Relative errors for γ , Right part—Relative errors in
σ 2. Top part—Sub-sampling with � = ε0.5: The errors converge to 0 with speed of convergence proportional
to ε0.5. Middle part—Sub-sampling with � = ε: The errors converge to a constant (≈ 33%) with speeds of
convergence proportional to ε. Bottom part—Sub-sampling with � = ε2: The errors increase to 100%

of duration ε. The N observed data are then obtained by sub-sampling the discretized SOU-
trajectory Y ε

t with step size �. The goal was to verify the analytical results derived above
on indirect sub-sampling estimation of the underlying parameters.

The underlying discretized trajectory of Xt is generated using a hybrid of Euler-
Maruyama and second-order Runge-Kutta discretization schemes for the SDE (1), with a
time-step length of d = 10−4 and total time interval T = 900, thus providing 9 × 106 points
of OU-trajectory. To generate SOU-observations, we average the simulated OU observations
over a sliding window of length ε, for the following values of ε,

ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3.

We consider 3 examples of adaptive sub-sampling schemes, namely, when observations are
sub-sampled with time-step �(ε) = ε0.5, �(ε) = ε, and �(ε) = ε2. In each one of these
3 cases, for each simulated trajectory of the SOU process, we compute the subsampled
estimators γ̂N and σ̂ 2

N given by (31).
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Figure 1 shows numerical verification of the consistency results obtained in Sect. 6. Er-
rors (in %) in the figure is defined to be the absolute value of the relative bias in the estimates.
For instance, for the error in the estimation of γ , we have

Error =
∣∣∣∣ γ̂N − γ

γ

∣∣∣∣.

1. Case �(ε) = ε0.5: Results are displayed in the top part of Fig. 1. The empirical rela-
tive bias (errors) of sub-sampled estimators tend to zero as ε → 0, as expected, since
�(ε)/ε → ∞ in this case.

2. Case �(ε) = ε: Results are displayed in the middle part of Fig. 1. The empirical relative
bias (errors) of the sub-sampled estimators converge to a non zero value, as ε → 0, as
expected, since �(ε)/ε, is bounded in this case.

Formula (34) for the asymptotic bias give Biasγ ≈ −γ /3 and Biasσ 2 ≈ −σ 2/3, which
fit very well with the numerical results.

3. Case �(ε) = ε2: Results are displayed in the bottom part of Fig. 1. The empirical rel-
ative bias (errors) of the sub-sampled estimators increase as ε → 0, as expected, since
�(ε)/ε → 0 in this case.

10 A Practical Example: The Additive Triad

We outline here a concrete example encountered in simplified dynamic models of at-
mospheric evolution, when only 3 main modes are kept in the Additive Triad model [13].
This example will be studied in detail elsewhere, and is only sketched here. We provide
results obtained from estimating parameters γ and σ 2 in SDE (1) when data is sub-sampled
from the slow mode in the Additive Triad model.

The additive triad model comprises of the stochastic process [xt , yt , zt ] in R3, where the
slow mode xt and the two fast modes yt , zt are driven by the equations,

dxt = A1ytzt

dt

ε
,

dyt = A2xtzt

dt

ε
− g1yt

dt

ε2
+ s1

dW1(t)

ε
, (49)

dzt = A3xtyt

dt

ε
− g2zt

dt

ε2
+ s2

dW2(t)

ε
,

where A1 + A2 + A3 = 0, gi , si are strictly positive and ε > 0 is the scale separation para-
meter, and where W1, W2 are Brownian motions. It is well known [13] that in the limit of
infinite scale separation as ε → 0, the slow mode xt converges weakly to the OU process Xt

with parameters γ and σ given by

γ = −A1

2(g1 + g2)

(
A2s

2
2

g2
+ A3s

2
1

g1

)
, σ 2 = (A1s1s2)

2

2g1g2(g1 + g2)
. (50)

In this context estimations of the parameters γ and σ must be performed using only indirect
observations of Xt generated by the slow mode xt of the Additive Triad model. This ex-
ample is quite close to the SOU process analyzed above and we have carried out numerical
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Fig. 2 Relative (%) errors in MLEs for γ and σ 2 based on observations from the Additive triad model
and sub-sampled with three different strategies. Left part—Relative errors for γ , Right part—Relative errors
in σ 2. Top part—Sub-sampling with � = ε0.5: The errors converge to 0. Middle part—Sub-sampling with
� = 4ε2: The errors converge to a constant. Bottom part—Sub-sampling with � = ε3: The errors increase
to 100%

simulations of the additive triad model using the following parameter values,

A1 = 0.9, A2 = −0.4, A3 = −0.5, g1 = 1,

s1 = 3, g2 = 1, s2 = 5.

The associated reduced model parameters are, γ = 3.2625, σ = 6.7500. We consider the
estimators γ̂N and σ 2

N , given by (13), based on (N + 1) observations sub-sampled from the
slow mode x such that Un = xn�. We consider three adaptive sub-sampling strategies for the
indirect estimation of the OU SDE from the data generated by the additive triad model in
(49).

Top part of the Fig. 2 demonstrates that when (�(ε)/ε2) → ∞ estimates for γ and σ 2

are consistent with respect to the theoretical results in (50). On the other hand, errors re-
main bounded away from zero for the adaptive sub-sampling strategy such that (�(ε)/ε2) is
bounded. This is depicted in the middle part of Fig. 2 where (�(ε)/ε2) tends to a non-zero
value, and hence, the errors converge to a constant strictly greater than zero. The bottom part
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of Fig. 2 is based on sub-sampling scheme such that (�(ε)/ε2) → 0, and the corresponding
estimation errors increase to 100%. Therefore, sub-sampling strategy � � ε2 is the favor-
able sub-sampling regime for the estimation of the OU SDE from the triad data. The nature
of the results is similar to the ones obtained for the SOU process.

Effectively, here ε2 plays the same role as ε in the SOU process (cf. Figs. 1 and 2).
This can be understood by analyzing the correlation function of xt for small lags. It can
be shown that the correlation function of xt scales as 1 − cte(τ 2ε−2), where τ is the lag
and ε is the parameter in (49). On the other hand, the correlation function of Y ε

t scales as
1 − cte(τ 2ε−1). Therefore, � � ε2 is the correct sub-sampling criteria in the triad model in
(49), and the analogous adaptive sub-sampling scheme to ensure consistency of estimators
is given by the following conditions,

ε → 0, � → 0, N� → ∞, (Nε4/�) < cte.

11 Conclusions and Further Research

The main result of our study is the characterization of optimal adaptive sub-sampling
schemes in a Gaussian context. The goal was to consistently estimate the drift and diffusion
parameters γ and σ of a non observable OU-process Xt , using N(ε) observations extracted
by sub-sampling, at time intervals �(ε), an approximating process Y ε

t which tends to Xt in
L2 as ε → 0. We obtain explicit asymptotic results for the estimation errors, and derive suffi-
cient conditions on N(ε), �(ε) ensuring that γ̂ε , σ̂ 2

ε are asymptotically consistent estimators
of the unknown parameters γ , σ 2 of the unobserved OU process. We also analyze the speed
of convergence of consistent estimators, and show that under explicit stronger conditions, as
ε → 0, the estimators γ̂ε , σ̂ 2

ε , have an L2-speed of convergence proportional to 1/
√

N�.
Our paper focuses on the favorable situation where the OU process Xt is approximated

by the Gaussian SOU processes Y ε
t , to characterize explicitly the family of optimal sub-

sampling regimes leading to consistent estimators having the best L2-speeds of convergence.
This specific framework replicates the scenario observed in several applications where a
mismatch between the data and the stochastic model impedes the estimation procedure,
so that appropriate adaptive sub-sampling schemes become necessary to obtain consistent
estimates and good L2-speeds of convergence.

In an ongoing study, we will extend the main results of this paper to a much wider class
of stationary Gaussian processes Xt , and to arbitrary non-Gaussian stationary processes Y ε

t

such that as ε → 0, the random variables Y ε
t tend to Xt in Lp for some p > 2. In such

generic cases, the adequate convergence speed of good adaptive sub-sampling schemes can
be identified by expanding the correlation function of Y ε for small lags, or alternatively by
the Lp-speed of convergence of the approximating process Y ε

t to Xt , as ε → 0. In this paper,
we have briefly illustrated the use of a small lag expansion of correlation functions, while
comparing the SOU process to the Additive triad model.

From a pragmatic point of view, insufficient sub-sampling can lead to large errors in
practical fitting of stochastic models to physical data intensively sampled from complex dy-
namic systems. On the other hand, optimal regimes for efficient sub-sampling depend on an
indexation parameter ε which is rarely known “intrinsically”, or even explicitly. Therefore,
development of efficient sub-sampling tests based on discrete datasets alone are necessary.
One of the natural approaches we are exploring in this direction is the empirical robustness
of estimators with respect to multiple sub-sampling of large finite data sets with different
values of �. This is equivalent to treating estimators as functions of the sub-sampling time
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step and analyzing their behavior as � decreases. This points out the part played by the data
points between X(t) and X(t + �), which have a potential efficient impact to determine
concretely whether a given � defines an empirically adequate sub-sampling rate. In this
context, understanding how sub-sampling affects the bias terms is the key for constructing
accurate and efficient estimators using only approximate data.

Acknowledgements Research of I. Timofeyev and R. Azencott is partially supported by the NSF Grants
DMS-0713793 and DMS-0811153, respectively.

Appendix: Moments of SOU Process

We outline briefly the explicit computation of moments in (27) for the SOU-process Y ε
t

given by (26). The mean of Y ε
t is obviously 0, and the covariance function of Y ε

t at time lag
h is given by,

Kε(h) = 1

ε

(∫ t+h

t+h−ε

E[XsY
ε
t ]ds

)
. (51)

Using the stationary covariances of Xt , given by (4), for each s ∈ [t + h − ε, t + h], where
h ≥ ε we obtain,

E[XsY
ε
t ] = σ 2e−γ s

(
eγ t − eγ (t−ε)

)
/(2γ 2ε). (52)

Using (51) and (52) the covariance function Kε(h), for h ≥ ε is given by,

Kε(h) = (σ 2e−γ h(e−γ ε + eγ ε − 2))/(2γ 3ε2).

For the case when 0 ≤ h < ε, using (51) we have

Kε(h) = 1

ε

(∫ t

t+h−ε

E[XsY
ε
t ]ds +

∫ t+h

t

E[XsY
ε
t ]ds

)
,

where E[XsY
ε
t ] can be computed using the stationary covariances of Xt to give,

Kε(h) = σ 2e−γ h{2γ (ε − h)eγ� + e−γ ε(e2γ h + 1) − 2}/(2γ 3ε2).
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